organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1-Dichloro-3-(6,1,3-oxadithiaoctocan-2-ylidene)-3-nitro-2-(4-methylphenylsulfanyl)propene

Cemil Ibis* and N. Gulsah Deniz

Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcilar-Istanbul, Turkey Correspondence e-mail: ibiscml@istanbul.edu.tr

correspondence e-mail: ibiscini@istanbul.edu.u

Received 21 May 2007; accepted 26 May 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.037; *wR* factor = 0.027; data-to-parameter ratio = 8.7.

The molecule of the title compound, $C_{15}H_{15}Cl_2NO_3S_3$, is not planar. The butadiene group and the 4-methylphenyl ring are inclined at an angle of 57.9 (1)°.

Related literature

For general background, see: Edema *et al.* (1993). The C–C bond lengths of the butadiene unit are similar to those in related compounds (Ibis & Deniz, 2006, 2007; Ibis *et al.*, 2006). For related literature, see: Ibis (1996).

 $V = 1839.78 (10) \text{ Å}^3$

 $0.40 \times 0.30 \times 0.20 \ \mathrm{mm}$

Mo $K\alpha$ radiation

 $\mu = 0.71 \text{ mm}^-$ T = 293.5 K

Z = 4

Experimental

Crystal data

Data collection

Rigaku R-AXIS RAPID S diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.772, T_{max} = 0.869$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 \\ wR(F^2) &= 0.027 \\ S &= 1.13 \\ 1886 \text{ reflections} \\ 217 \text{ parameters} \\ \text{H atoms treated by a mixture of independent and constrained refinement} \end{split}$$

69828 measured reflections 1897 independent reflections 1886 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.034$

 $\begin{array}{l} \Delta \rho_{max} = 0.22 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.20 \ e \ \mathring{A}^{-3} \\ \text{Absolute structure: Flack (1983), 11} \\ \text{Friedel pairs} \\ \text{Flack parameter: 0.07 (5)} \end{array}$

Table 1Selected torsion angles (°).

C1-C2-C3-C4	-97.2(3)	O3-C7-C8-S3	-59.0(4)
O3-C6-C5-S2	-74.0 (4)		

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2003); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

This work was supported by the Research Fund of Istanbul University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2259).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Edema, J. J. H., Buter, J., Schoonbeek, F. S., Meetsma, A., Bolhuis, F. V. & Kellogg, R. M. (1993). J. Org. Chem. 58, 5624–5627.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Ibis, C. (1996). Phosphorus Sulfur Silicon, 119, 49-60.

Ibis, C. & Deniz, N. G. (2006). Acta Cryst. E62, 05373-05374.

Ibis, C. & Deniz, N. G. (2007). Acta Cryst. E63, o1091-o1092.

Ibis, C., Sayil, M. C. & Deniz, N. G. (2006). Acta Cryst. E62, 0800-0801.

Rigaku/MSC (2003). CrystalStructure. Version 3.5.1. Rigaku/MSC, The Woodlands, Texas, USA.

Rigaku/MSC (2005). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA. supplementary materials

Acta Cryst. (2007). E63, o3058 [doi:10.1107/S1600536807025731]

1,1-Dichloro-3-(6,1,3-oxadithiaoctocan-2-ylidene)-3-nitro-2-(4-methylphenylsulfanyl)propene

C. Ibis and N. G. Deniz

Comment

Compounds with conjugated double bonds are fairly reactive because of their strained structures, thus, effective synthesis of these compounds are still challenging in organic chemistry. Macrocyclic thio-crown ethers are particular interest, among other reasons, as potential heavy-metal receptors and could be useful for treatment of heavy-metal poisoning (Edema *et al.*, 1993). The aim of this study was to determine the conformation of the 4,4-dichloro-2-nitro-3-(4-methylphenylsulfanyl)-1,1- (*cyclo*-oxydiethanesulfanyl) -buta-1,3-diene (Ibis, 1996). The butadiene group and the 4-methylphenyl ring are inclined at an angle of 57.9 (1)°. The butadiene unit has assumed a configuration close to *cisoid*, but is not completely planar as would be if the two double bounds were fully conjugated. Torsion angle of C4—C3—C2—C1 is -97.2 (3)°.

Experimental

To a mixture of 2-nitro-1,3,4,4-tetrachloro-1-(4-methylphenylthio) -1,3-butadiene (2 g, 5.57 mmol) and 2,2'-oxydiethanethiol, HSCH₂CH₂OCH₂CH₂SH, (0.77 g, 5.57 mmol) were stirred in ethanol (35 ml) and 2 g sodium hydroxide in 10 ml water was added at room temperature. The mixture was stirred for 2 h. Chloroform (50 ml) was added to the reaction mixture. The organic layer was separated and washed with water (4x30 ml), and dried MgSO₄. The solvent was evaporated and residue was purified by column chromatography on silica gel (0.063–0.20 mm). The yellow crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution at the room temperature; yield 0.60 g, 25%.

Refinement

H atoms were treated as riding, with C—H = 0.95 (6)Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

1,1-Dichloro-3-(6,1,3-oxadithiaoctocan-2-ylidene)-3-nitro- 2-(4-methylphenylsulfanyl)propene

Crystal data

 $C_{15}H_{15}Cl_2NO_3S_3$ $M_r = 424.37$ $D_{\rm x} = 1.532 \text{ Mg m}^{-3}$ Melting point: 418-420 K

Orthorhombic, $P2_12_12$
Hall symbol: P 2 2ab
<i>a</i> = 13.5112 (5) Å
<i>b</i> = 18.0213 (6) Å
<i>c</i> = 7.5559 (2) Å
$V = 1839.78 (10) \text{ Å}^3$
Z = 4
$F_{000} = 872.00$

Data collection

Rigaku R-AXIS RAPID S diffractometer	1886 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.034$
ω scans	$\theta_{\text{max}} = 25.1^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -16 \rightarrow 16$
$T_{\min} = 0.772, \ T_{\max} = 0.869$	$k = -21 \rightarrow 21$
69828 measured reflections	$l = -8 \rightarrow 8$
1897 independent reflections	

Refinement

Refinement on F

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.027$ S = 1.131886 reflections 217 parameters H atoms treated by a mixture of independent and constrained refinement

Special details

Geometry. Least Squares Planes

_____ Plane number 1 _____

Atoms Defining Plane Distance e.s.d. C1 [1;0;0;0] -0.1475 0.0008 C2 [1;0;0;0] 0.2949 0.0017 C3 [1;0;0;0] -0.3380 0.0019 C4 [1;0;0;0] 0.1243 0.0007

Additional Atoms Distance e.s.d.

Mean deviation from plane is 0.2262 angstrom Chi-squared: 30910.697

_____ Plane number 2 _____

Mo K α radiation $\lambda = 0.7107$ Å Cell parameters from 10401 reflections $\theta = 2.7-25.0^{\circ}$ $\mu = 0.71 \text{ mm}^{-1}$ T = 293.5 KBlock, yellow $0.40 \times 0.30 \times 0.20 \text{ mm}$

Chebychev polynomial with 3 parameters (Carruthers & Watkin (1979). Acta Cryst. A35, 698–699) 4.7778 -2.5240 3.7682 $(\Delta/\sigma)_{max} = 0.011$ $\Delta\rho_{max} = 0.22 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ Extinction correction: none Absolute structure: Flack (1983), 11 Friedel pairs Flack parameter: 0.07 (5) Atoms Defining Plane Distance e.s.d. C9 [1;0;0;0] 0.0065 0.0020 C10 [1;0;0;0] -0.0062 0.0022 C11 [1;0;0;0] -0.0039 0.0024 C12 [1;0;0;0] 0.0113 0.0021 C13 [1;0;0;0] -0.0110 0.0023 C14 [1;0;0;0] 0.0007 0.0021

Additional Atoms Distance e.s.d.

Mean deviation from plane is 0.0066 angstrom Chi-squared: 36.706

Dihedral angles between least-squares planes —

plane plane angle e.s.d. 1 2 57.939 0.179

Refinement. Refinement using reflections with $F^2 > 3.0 \operatorname{sigma}(F^2)$. The weighted *R*-factor(*wR*), goodness of fit (S) and *R*-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of $F^2 > 2.0 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S(2)	0.91725 (5)	0.26150 (4)	1.20586 (11)	0.0540 (2)
S(1)	0.84229 (6)	0.44795 (4)	1.09641 (10)	0.0555 (2)
S(3)	0.82153 (6)	0.16803 (4)	0.91382 (11)	0.0616 (2)
Cl(1)	0.67918 (7)	0.45722 (5)	1.38723 (12)	0.0775 (3)
Cl(2)	0.60463 (6)	0.31134 (5)	1.2969 (1)	0.0780 (3)
O(3)	0.8220 (2)	0.09720 (12)	1.2966 (3)	0.0685 (6)
O(2)	0.6445 (2)	0.36598 (12)	0.8510(3)	0.0680 (7)
N(1)	0.6947 (2)	0.30988 (13)	0.8709 (3)	0.0550 (7)
C(12)	1.0330 (2)	0.3895 (1)	0.6181 (4)	0.0504 (8)
O(1)	0.6907 (2)	0.25714 (13)	0.7694 (3)	0.0866 (8)
C(2)	0.7595 (2)	0.37355 (13)	1.1325 (4)	0.0452 (7)
C(9)	0.9120 (2)	0.41788 (13)	0.9113 (4)	0.0468 (7)
C(11)	1.0693 (2)	0.3824 (2)	0.7885 (4)	0.0561 (8)
C(3)	0.7635 (2)	0.3066 (1)	1.0190 (4)	0.0446 (7)
C(4)	0.8237 (2)	0.24795 (13)	1.0448 (3)	0.0435 (7)
C(14)	0.8750 (2)	0.4239 (2)	0.7403 (4)	0.0538 (8)
C(13)	0.9349 (2)	0.4091 (2)	0.5970 (4)	0.0566 (8)
C(10)	1.0099 (2)	0.3963 (2)	0.9345 (4)	0.0530 (8)
C(1)	0.6910 (2)	0.3792 (2)	1.2578 (4)	0.0540 (8)
C(6)	0.8883 (3)	0.1338 (2)	1.4124 (5)	0.0684 (10)
C(5)	0.8718 (3)	0.2166 (2)	1.4040 (4)	0.0645 (9)
C(7)	0.8667 (3)	0.0581 (2)	1.1558 (5)	0.0684 (10)
C(8)	0.9115 (2)	0.1069 (2)	1.0145 (5)	0.0623 (9)
C(15)	1.0992 (3)	0.3795 (2)	0.4603 (4)	0.0729 (10)
H(1)	0.8085 (2)	0.4397 (2)	0.7242 (4)	0.0645*
H(2)	0.9074 (2)	0.4117 (2)	0.4815 (4)	0.0680*
H(3)	1.1367 (2)	0.3693 (2)	0.8068 (4)	0.0672*
H(4)	1.0358 (2)	0.3910 (2)	1.0507 (4)	0.0636*
H(5)	0.9025 (3)	0.2397 (2)	1.5029 (4)	0.077*
H(6)	0.8022 (3)	0.2238 (2)	1.4104 (4)	0.077*
H(7)	0.8786 (3)	0.1156 (2)	1.5291 (5)	0.082*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H(8)	0.9545 (3)	0.1244 (2)	1.3765 (5)	0.082*
H(9)	0.9401 (2)	0.0766 (2)	0.9254 (5)	0.075*
H(10)	0.9615 (2)	0.1364 (2)	1.0679 (5)	0.075*
H(11)	0.9164 (3)	0.0264 (2)	1.2026 (5)	0.082*
H(12)	0.8166 (3)	0.0290 (2)	1.1010 (5)	0.082*
H(13)	1.1272 (3)	0.3312 (2)	0.4628 (4)	0.088*
H(14)	1.0614 (3)	0.3854 (2)	0.3551 (4)	0.088*
H(15)	1.1506 (3)	0.4155 (2)	0.4628 (4)	0.088*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S(2)	0.0532 (4)	0.0441 (3)	0.0646 (4)	-0.0069 (3)	-0.0154 (4)	0.0018 (3)
S(1)	0.0689 (5)	0.0436 (3)	0.0540 (4)	-0.0054 (3)	0.0049 (4)	-0.0090 (3)
S(3)	0.0740 (5)	0.0499 (4)	0.0609 (5)	0.0050 (3)	-0.0072 (4)	-0.0153 (4)
Cl(1)	0.0919 (6)	0.0718 (5)	0.0687 (5)	0.0196 (5)	0.0132 (5)	-0.0181 (4)
Cl(2)	0.0658 (5)	0.0829 (5)	0.0854 (6)	-0.0053 (4)	0.0223 (5)	0.0040 (5)
O(3)	0.0600 (12)	0.0708 (12)	0.075 (1)	-0.0143 (11)	0.0024 (13)	-0.0024 (12)
O(2)	0.0595 (12)	0.0694 (12)	0.075 (2)	0.0109 (11)	-0.0168 (12)	0.0018 (11)
N(1)	0.056 (1)	0.0562 (13)	0.053 (1)	-0.0019 (11)	-0.0094 (12)	-0.0043 (12)
C(12)	0.052 (2)	0.045 (1)	0.054 (2)	-0.0051 (12)	0.002 (1)	-0.0044 (13)
O(1)	0.106 (2)	0.079 (2)	0.075 (2)	0.013 (1)	-0.040 (2)	-0.025 (1)
C(2)	0.048 (1)	0.0429 (13)	0.045 (2)	0.0031 (11)	-0.0034 (13)	0.0003 (12)
C(9)	0.054 (2)	0.0384 (11)	0.048 (2)	-0.0049 (12)	0.000(1)	0.0008 (12)
C(11)	0.047 (2)	0.060 (2)	0.062 (2)	-0.0012 (13)	-0.006 (2)	0.001 (2)
C(3)	0.047 (1)	0.0446 (13)	0.042 (1)	-0.0022 (12)	-0.0028 (12)	-0.0025 (12)
C(4)	0.0447 (13)	0.0409 (12)	0.045 (2)	-0.0068 (11)	-0.0012 (12)	-0.0026 (11)
C(14)	0.050 (2)	0.054 (2)	0.057 (2)	0.0027 (13)	-0.004 (1)	0.001 (1)
C(13)	0.064 (2)	0.061 (2)	0.045 (2)	0.001 (1)	-0.006 (2)	-0.004 (1)
C(10)	0.057 (2)	0.052 (2)	0.050 (2)	-0.0083 (13)	-0.009(1)	0.0006 (13)
C(1)	0.059 (2)	0.053 (1)	0.050 (2)	0.0072 (13)	0.007(1)	-0.0019 (12)
C(6)	0.079 (2)	0.060 (2)	0.066 (2)	-0.007 (2)	-0.012 (2)	0.010 (2)
C(5)	0.079 (2)	0.059 (2)	0.055 (2)	-0.001 (2)	-0.015 (2)	0.003 (2)
C(7)	0.068 (2)	0.045 (2)	0.093 (3)	-0.003 (1)	-0.010 (2)	-0.005 (2)
C(8)	0.056 (2)	0.050 (2)	0.081 (2)	0.007 (1)	0.005 (2)	-0.016 (2)
C(15)	0.065 (2)	0.091 (2)	0.062 (2)	-0.007 (2)	0.008 (2)	-0.011 (2)

Geometric parameters (Å, °)

1.771 (3)	C(11)—C(10)	1.387 (4)
1.809 (3)	C(11)—H(3)	0.950 (4)
1.767 (3)	C(3)—C(4)	1.348 (4)
1.771 (3)	C(14)—C(13)	1.377 (4)
1.748 (2)	C(14)—H(1)	0.950 (4)
1.808 (3)	C(13)—H(2)	0.950 (4)
1.720 (3)	C(10)—H(4)	0.950 (4)
1.716 (3)	C(6)—C(5)	1.510 (4)
1.415 (4)	C(6)—H(7)	0.950 (5)
1.412 (4)	C(6)—H(8)	0.950 (5)
	1.771 (3) 1.809 (3) 1.767 (3) 1.771 (3) 1.748 (2) 1.808 (3) 1.720 (3) 1.716 (3) 1.415 (4) 1.412 (4)	1.771 (3) $C(11)C(10)$ $1.809 (3)$ $C(11)H(3)$ $1.767 (3)$ $C(3)C(4)$ $1.771 (3)$ $C(14)C(13)$ $1.748 (2)$ $C(14)H(1)$ $1.808 (3)$ $C(13)H(2)$ $1.720 (3)$ $C(10)H(4)$ $1.716 (3)$ $C(6)C(5)$ $1.415 (4)$ $C(6)H(7)$ $1.412 (4)$ $C(6)H(8)$

O(2)—N(1)	1.227 (3)	C(5)—H(5)	0.950 (5)
N(1)—O(1)	1.222 (3)	C(5)—H(6)	0.950 (5)
N(1)—C(3)	1.455 (4)	C(7)—C(8)	1.510 (5)
C(12)—C(11)	1.384 (4)	C(7)—H(11)	0.950 (5)
C(12)—C(13)	1.381 (4)	C(7)—H(12)	0.950 (5)
C(12)—C(15)	1.501 (5)	C(8)—H(9)	0.950 (5)
C(2)—C(3)	1.481 (4)	C(8)—H(10)	0.950 (4)
C(2)—C(1)	1.328 (4)	C(15)—H(13)	0.950 (5)
C(9)—C(14)	1.389 (4)	С(15)—Н(14)	0.950 (5)
C(9)—C(10)	1.390 (4)	С(15)—Н(15)	0.950 (5)
C(4)—S(2)—C(5)	105.4 (1)	Cl(1) - C(1) - Cl(2)	114.9 (2)
C(2)—S(1)—C(9)	103.1 (1)	Cl(1)—C(1)—C(2)	122.2 (2)
C(4)—S(3)—C(8)	104.6 (1)	Cl(2)—C(1)—C(2)	122.8 (2)
C(6)—O(3)—C(7)	115.4 (2)	C(5)—C(6)—H(7)	111.1 (4)
O(1)—N(1)—C(3)	118.6 (2)	C(5)—C(6)—H(8)	107.6 (4)
O(1)—N(1)—O(2)	122.6 (3)	C(5)—C(6)—O(3)	110.0 (3)
C(3)—N(1)—O(2)	118.8 (2)	H(7)—C(6)—H(8)	109.5 (5)
C(11)—C(12)—C(13)	118.1 (3)	H(7)—C(6)—O(3)	109.0 (4)
C(11)—C(12)—C(15)	121.1 (3)	H(8)—C(6)—O(3)	109.7 (4)
C(13)—C(12)—C(15)	120.7 (3)	H(5)—C(5)—H(6)	109.5 (4)
C(3) - C(2) - C(1)	120.1 (2)	H(5) - C(5) - S(2)	107.9 (3)
C(3)-C(2)-S(1)	120.4 (2)	H(5)—C(5)—C(6)	109.6 (3)
C(1)-C(2)-S(1)	119.5 (2)	H(6) - C(5) - S(2)	108.5 (3)
C(14)—C(9)—C(10)	118.8 (3)	H(6)—C(5)—C(6)	106.1 (3)
C(14)—C(9)—S(1)	121.3 (2)	S(2)—C(5)—C(6)	115.2 (2)
C(10)—C(9)—S(1)	119.5 (2)	C(8)—C(7)—H(11)	109.3 (4)
C(10)—C(11)—H(3)	118.9 (4)	C(8)—C(7)—H(12)	107.4 (4)
C(10)—C(11)—C(12)	121.1 (3)	C(8)—C(7)—O(3)	114.4 (2)
H(3)—C(11)—C(12)	119.9 (4)	H(11)—C(7)—H(12)	109.5 (4)
C(4) - C(3) - N(1)	121.9 (2)	H(11)—C(7)—O(3)	108.8 (4)
C(4)—C(3)—C(2)	125.2 (2)	H(12)—C(7)—O(3)	107.4 (4)
N(1)—C(3)—C(2)	112.9 (2)	H(9)—C(8)—H(10)	109.5 (4)
S(2) - C(4) - S(3)	121.0(1)	H(9) - C(8) - S(3)	109.0 (3)
S(2) - C(4) - C(3)	115.0 (2)	H(9)—C(8)—C(7)	109.2 (3)
S(3)—C(4)—C(3)	123.6 (2)	H(10)—C(8)—S(3)	108.4 (3)
C(13)—C(14)—H(1)	120.8 (3)	H(10)—C(8)—C(7)	108.1 (4)
C(13)—C(14)—C(9)	120.3 (3)	S(3)—C(8)—C(7)	112.5 (2)
H(1) - C(14) - C(9)	118.8 (3)	H(13)—C(15)—H(14)	109.5 (5)
H(2) - C(13) - C(12)	119.6 (3)	H(13)—C(15)—H(15)	109.5 (5)
H(2) - C(13) - C(14)	118.9 (3)	H(13) - C(15) - C(12)	109.3 (4)
C(12)-C(13)-C(14)	121.5 (3)	H(14)—C(15)—H(15)	109.5 (5)
H(4)—C(10)—C(9)	119.7 (3)	H(14) - C(15) - C(12)	109.3 (4)
H(4) - C(10) - C(11)	120.2 (4)	H(15) - C(15) - C(12)	109.7 (4)
C(9)—C(10)—C(11)	120.1 (3)		()
C(5) - S(2) - C(4) - S(3)	-87.1 (2)	S(1) - C(2) - C(1) - C(1)	0.3 (4)
C(5) - S(2) - C(4) - C(3)	100.1 (2)	S(1) - C(2) - C(1) - C(2)	177.5 (2)
C(4) = S(2) = C(5) = C(6)	82.4 (3)	C(3) - C(2) - C(1) - C(1)	-1771(2)
C(4) = S(2) = C(5) = H(5)	-1549(3)	C(3) - C(2) - C(1) - C(2)	01(4)
	10 1.7 (3)	C(2) C(2) C(1) C(2)	··· ()

supplementary materials

C(4)—S(2)—C(5)—H(6)	-36.4 (3)	S(1)—C(9)—C(14)—C(13)	171.7 (2)
C(9) - S(1) - C(2) - C(3)	1.2 (2)	S(1)—C(9)—C(14)—H(1)	-6.6 (4)
C(9) - S(1) - C(2) - C(1)	-176.2 (2)	C(10)—C(9)—C(14)—C(13)	-0.3 (4)
C(2) - S(1) - C(9) - C(14)	80.2 (2)	C(10)—C(9)—C(14)—H(1)	-178.6 (3)
C(2)— $S(1)$ — $C(9)$ — $C(10)$	-107.8 (2)	S(1)—C(9)—C(10)—C(11)	-171.2 (2)
C(8)—S(3)—C(4)—S(2)	10.9 (2)	S(1)—C(9)—C(10)—H(4)	9.1 (4)
C(8)— $S(3)$ — $C(4)$ — $C(3)$	-176.9 (2)	C(14)—C(9)—C(10)—C(11)	1.0 (4)
C(4)—S(3)—C(8)—C(7)	89.4 (2)	C(14)—C(9)—C(10)—H(4)	-178.7 (3)
C(4)—S(3)—C(8)—H(9)	-149.3 (3)	C(12)—C(11)—C(10)—C(9)	0.0 (4)
C(4)—S(3)—C(8)—H(10)	-30.2 (4)	C(12)—C(11)—C(10)—H(4)	179.7 (3)
C(7)—O(3)—C(6)—C(5)	116.5 (3)	H(3)—C(11)—C(10)—C(9)	177.9 (3)
C(7)—O(3)—C(6)—H(7)	-121.5 (4)	H(3)—C(11)—C(10)—H(4)	-2.3 (5)
C(7)—O(3)—C(6)—H(8)	-1.7 (4)	N(1)—C(3)—C(4)—S(2)	168.8 (2)
C(6)—O(3)—C(7)—C(8)	-71.2 (3)	N(1)—C(3)—C(4)—S(3)	-3.8 (4)
C(6)—O(3)—C(7)—H(11)	51.4 (4)	C(2) - C(3) - C(4) - S(2)	-10.8 (4)
C(6)—O(3)—C(7)—H(12)	169.7 (3)	C(2) - C(3) - C(4) - S(3)	176.7 (2)
O(2) - N(1) - C(3) - C(2)	2.2 (4)	C(9) - C(14) - C(13) - C(12)	-1.4 (4)
O(2) - N(1) - C(3) - C(4)	-177.3 (3)	C(9)—C(14)—C(13)—H(2)	177.6 (3)
O(1) - N(1) - C(3) - C(2)	-179.1 (2)	H(1) - C(14) - C(13) - C(12)	176.9 (3)
O(1) - N(1) - C(3) - C(4)	1.3 (4)	H(1) - C(14) - C(13) - H(2)	-4.2 (5)
C(13) - C(12) - C(11) - C(10)	-1.7 (4)	O(3) - C(6) - C(5) - S(2)	-74.0 (4)
C(13) - C(12) - C(11) - H(3)	-179.6 (3)	O(3)—C(6)—C(5)—H(5)	164.1 (4)
C(15)-C(12)-C(11)-C(10)	175.8 (3)	O(3)—C(6)—C(5)—H(6)	46.1 (4)
C(15)—C(12)—C(11)—H(3)	-2.1 (5)	H(7) - C(6) - C(5) - S(2)	165.2 (4)
C(11) - C(12) - C(13) - C(14)	2.3 (4)	H(7) - C(6) - C(5) - H(5)	43.4 (6)
C(11)-C(12)-C(13)-H(2)	-176.6 (3)	H(7)—C(6)—C(5)—H(6)	-74.7 (5)
C(15)-C(12)-C(13)-C(14)	-175.1 (3)	H(8) - C(6) - C(5) - S(2)	45.4 (4)
C(15)—C(12)—C(13)—H(2)	6.0 (5)	H(8)—C(6)—C(5)—H(5)	-76.4 (5)
C(11)-C(12)-C(15)-H(13)	58.9 (5)	H(8)—C(6)—C(5)—H(6)	165.5 (4)
C(11) - C(12) - C(15) - H(14)	178.8 (4)	O(3)—C(7)—C(8)—S(3)	-59.0 (4)
C(11)-C(12)-C(15)-H(15)	-61.1 (5)	O(3)—C(7)—C(8)—H(9)	179.7 (4)
C(13) - C(12) - C(15) - H(13)	-123.7 (4)	O(3)—C(7)—C(8)—H(10)	60.7 (4)
C(13) - C(12) - C(15) - H(14)	-3.9 (5)	H(11) - C(7) - C(8) - S(3)	178.7 (3)
C(13) - C(12) - C(15) - H(15)	116.2 (4)	H(11)—C(7)—C(8)—H(9)	57.5 (5)
S(1) - C(2) - C(3) - N(1)	-94.2 (3)	H(11)—C(7)—C(8)—H(10)	-61.6 (5)
S(1) - C(2) - C(3) - C(4)	85.4 (3)	H(12)—C(7)—C(8)—S(3)	60.0 (4)
C(1)-C(2)-C(3)-N(1)	83.2 (3)	H(12)—C(7)—C(8)—H(9)	-61.2 (5)
C(1) - C(2) - C(3) - C(4)	-97.2 (3)	H(12)—C(7)—C(8)—H(10)	179.8 (4)

